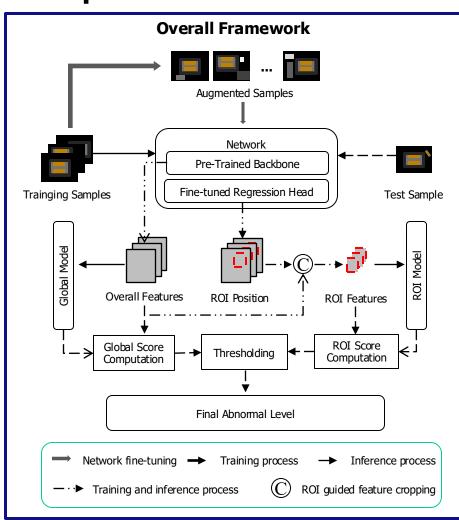
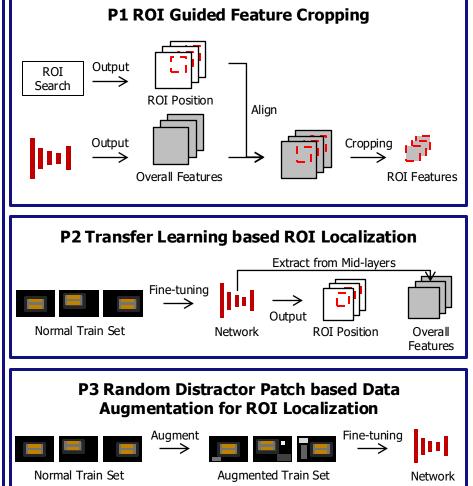
# Transfer Learning and ROI Guided Feature Cropping based GPU Accelerated Real-time Abnormal Level Detection in Logistics

武 文碩 池永研究室 修士課程修了


### Background


■ In real logistics applications, abnormal cases vary in severity and therefore require different handling strategies. A real-time abnormal level detection system can provide timely and targeted responses.

## **♦** Challenges

- Data limitation: the randomness and rarity of abnormal cases make it difficult to obtain representative abnormal samples for modeling.
- Latency constraint: low detection latency is essential to meet the real-time requirements of real world logistics application.
- Hardware constraint: high-performance devices are not always available, necessitating lightweight and hardware-friendly detection methods for real application.

#### Proposals





#### Experiment Results

| Method   | AUROC(1st) | AUROC(2nd) | Latency  |
|----------|------------|------------|----------|
| Baseline | 0.998      | 0.974      | 119.1 ms |
| P1       | 0.998      | 0.970      | 100.8 ms |
| P1+P2    | 0.998      | 0.899      | 10 ms    |
| P1+P2+P3 | 0.998      | 0.943      | 10 ms    |

#### Conclusion

■ The proposed method achieves good real-time performance compared with baseline work, with 0.998 AUROC in first round detection, 0.943 AUROC in second round detection and around 10 ms latency.

